Introduction of Numpy
What is Numpy ?
- Numpy is python library.
- It's work with array.
- Used for numerical and scientific computing.
features of NumPy
- N-dimensional array
- In build Mathematical functions
- Broadcasting
- Performance Optimization
Common use case of numpy
Data Analysis
andManipulation
-> cleaning, manipulatingMachine Learning
-> foundation of algorithmsscientifi computing
-> numerical simulations and calculationsImage Processing
-> manipulate image as multi-dimension Array
Disadvantages to numpy
- all the element are the
same data type
. - Once created, the total size of the array
can’t change
- shape must be
rectangular
, notjagged
How to Install numpy
- open you
Command Prompt
orterminal
- run this command
pip install numpy
# or
python -m pip install numpy
- Your numpy was install.
- if you use numpy than import numpy in below syntax
import numpy as np
- in import numpy to import this library and as meaning assas
How to Create a Numpy array
np.array()
- Creates an array from python list,tuple or many array like objects
arr = np.array([1,2,3,4])
np.zeros
-
this function are the create an array and Its all the element values are zero.
-
In this function pass args is which type of array are the create like dimention of the array.
-
this dimention are pass on the tuple .
arr = np.zeros((3,4))
np.ones
- ones function are same into zero. but this function are the create an array and Its all the element values are one.
arr = np.zeros((3,4))
np.empty
- This function are use to creata a array and all element values are empty(Contains uninitialized Values )
arr = np.empty((2,2))
np.arange
- Returns evenly spaced values within a specified interval.
arr = np.arange(0,10,2)
print(arr)
# Output: [0, 2, 4, 6, 8]
np.linspace
- Generates an array of evenly spaced numbers over a specified range.
arr = np.linspace(0,10,2)
print(arr)
np.random.rand()
- reates an array of random numbers uniformly distributed between 0 and 1.
arr = np.random.rand(5)
print(arr)
size & shape ,Reshape
Size
- In Any Array are the give to how to find Total Number of Element to use
array.size
.
arr = np.array([
[1,2,3],[4,5,6]
])
print(arr.size) #output 6
Shape
- find the number of dimensions in the Array use to shape
arr = np.array([
[1,2,3],[4,5,6]
])
print(arr.ndim)
Reshape
- Any Give Array to change the dimension of Array to use the Reshape
arr = np.array([1,2,3,4,5,6])
np.reshape(arr,shape=(2,3))
Sort element
sort function
- This function use to all the element are the sort in ascending order.
- If you are using multi-dimension array to specify the axis
arr = np.array([1,3,2,6,3,6,3,7,4,5,6])
np.sort(arr)
list vs python numpy
List
import time
#python noraml list using
a = list(range(0,100000))
b = list(range(100000,200000))
c = []
start = time.time()
for i in range(len(a)):
c.append(a[i] + b[i])
end = time.time()
print(end-start)
numpy
#numpy
import numpy as np
import time
a = np.arange(0,100000)
b = np.arange(100000,200000)
start = time.time()
c = a + b
end = time.time()
print(end-start)